Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

نویسندگان

  • Soyoung Park
  • Cen Li
  • Hong Zhao
  • Zbigniew Darzynkiewicz
  • Dazhong Xu
چکیده

Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XRCC1 protects against particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells.

Water-insoluble hexavalent chromium compounds are well-established human lung carcinogens. Lead chromate, a model insoluble Cr(VI) compound, induces DNA damage, chromosome aberrations, and dose-dependent cell death in human and Chinese hamster ovary (CHO) cells. The relationship between lead chromate-induced DNA damage and chromosome aberrations is unknown. Our study focus was on examining the ...

متن کامل

Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling

Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The pre...

متن کامل

Ku80 deficiency does not affect particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells.

Particulate hexavalent chromium ((Cr(VI)) compounds are human lung carcinogens. These compounds induce DNA damage, chromosome aberrations, and concentration-dependent cell death in human and Chinese hamster ovary (CHO) cells. The relationship between Cr(VI)-induced DNA damage and chromosome aberrations is poorly understood. Accordingly, this study focused on examining the role of Ku80, a gene i...

متن کامل

Undetectable role of oxidative DNA damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with restored ascorbate levels.

Cultured human cells are invaluable biological models for mechanistic studies of genotoxic chemicals and drugs. Continuing replacement of animals in toxicity testing will further increase the importance of in vitro cell systems, which should accurately reproduce key in vivo characteristics of toxicants such as their profiles of metabolites and DNA lesions. In this work, we examined how a common...

متن کامل

Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth

Hepatocyte growth factor (HGF)/Met signaling controls cell migration, growth and differentiation in several embryonic organs and is implicated in human cancer. The physiologic mechanisms that attenuate Met signaling are not well understood. Here we report a mechanism by which mitogen-inducible gene 6 (Mig6; also called Gene 33 and receptor-associated late transducer) negatively regulates HGF/Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016